##### Questions

Age and Earnings,

Subscribers,

Credit Wizard,

CTR,

Bacterial Growth,

Birthday Cards,

Class Grades,

Credit Score,

Free Throws,

Median Height,

Clean CSV,

Distribution Fitting,

Cubic Approximation##### Skills

Data Science
Data Science

When we need to discover the information hidden in vast amounts of data, or make smarter decisions to deliver even better products, data scientists hold the key to the answers you need.

Linear regression
Linear regression

Linear regression is one of the most frequently used methods for data analysis due to its simplicity and applicability to a wide variety of problems.

Poisson distribution
Poisson distribution

Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring within a fixed interval of time and/or space, if these events occur with a known average rate and independently of the time since the last event. As one of the most widely used distributions, it is important for all Data Scientists to be familiar with it.

Probability
Probability

Probability theory is the foundation of most statistical and machine-learning algorithms.

Decision tree
Decision tree

A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences. It is usually a tool for displaying an algorithm that contains only conditional control statements and is a must-know for every data scientist.

Binomial distribution
Binomial distribution

Binomial distribution is the discrete probability distribution of the number of successes in a sequence of independent yes/no experiments, each of which yields success with a given probability.

p-value
p-value

An important concept, p-value is defined as the probability of obtaining a result equal to or "more extreme" than what was actually observed, when the null hypothesis is true.

Curve Fitting
Curve Fitting

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points. This is basic knowledge of every data scientist.

Grouping
Grouping

Grouping is the process of separating items into different groups. Developers and data scientists often need to group data so they can examine them separately.

Pandas
Pandas

Pandas is a library for the Python programming language that’s used for data manipulation and analysis. It is an essential library for any data scientist who works with Python.

Sorting
Sorting

Every programmer should be familiar with data-sorting methods, as sorting is very common in data-analysis processes.

NumPy
NumPy

NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. NumPy is an essential library for any data scientist who works with Python.

Classification
Classification

Classification is the problem of identifying to which set of categories a new observation belongs, on the basis of a training set of data containing observations whose category membership is known. As one of the common tasks in machine learning, it’s important for all data scientists.

k-nearest neighbors
k-nearest neighbors

An important Data Science algorithm, the k-nearest neighbors algorithm is a non-parametric method used for classification and regression. In both cases, the input consists of the k closest training examples in the feature space. The output depends on whether k-NN is used for classification or regression.

Machine learning
Machine learning

Machine learning is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It’s important for all tasks where it’s infeasible to construct conventional algorithms, which is often the case in Data Science.

Scikit-learn
Scikit-learn

Scikit-learn (or sklearn) is a machine learning library for the Python programming language. Every data scientist who works with Python and tasks such as classification, regression, and clustering algorithms should know how to use it.

Data aggregation
Data aggregation

Data aggregation is the process of gathering and summarizing information in a specified form. It is a common component of most statistical analysis processes.

Data cleaning
Data cleaning

Data cleaning or data cleansing is the process of detecting and correcting (or removing) corrupt or inaccurate records. Data scientists should be familiar with it to avoid incorrect records that can affect analysis.

Processing CSV
Processing CSV

A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values. Each line of the file is a data record. Each record consists of one or more fields, separated by commas. Processing CSV files is a common task when working with tabular data.

Cauchy distribution
Cauchy distribution

Cauchy distribution is the distribution of the ratio of two independent normally distributed Gaussian random variables. As one of the most widely used distributions, it is important for all Data Scientists to be familiar with it.

Exponential distribution
Exponential distribution

Exponential distribution is the probability distribution that describes the time between events in a process in which events occur continuously and independently at a constant average rate. As one of the most widely used distributions, it is important for all Data Scientists to be familiar with it.

Normal distribution
Normal distribution

Normal distribution is a very common continuous probability distribution. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. As one of the most widely used distributions, it is important for all Data Scientists to be familiar with it.

SciPy
SciPy

SciPy is a Python library used for scientific and technical computing. Every data scientist who uses Python as a programming language should know how to use it for tasks such as optimization, linear algebra, integration, etc.

Nonlinear regression
Nonlinear regression

Nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. Since many problems are not linear, nonlinear regression is important for machine learning practitioners.